Vivo首席天線專家黃奐衢博士于11月16日在北京舉辦的2017未來信息通信技術國際研討會上于手機業界首度公開題為“手機毫米波天線陣列設計概覽”的演講時便提出,從1G乃至于5G的sub-6GHz(低于6 GHz)頻段,天線設計的主要挑戰基本上是來自于“量的增長”,如無線通信頻段數量的增長及天線數量上的增長。
然而,到了5G毫米波頻段,手機天線設計從單天線且波束固定的天線設計,轉變為天線陣列(多天線單元)的設計,同時還是可波束賦形(beamforming)的陣列設計。故黃博士認為,5G毫米波的天線陣列設計對手機天線設計的技術與藝術而言,則可視為是“質的跳躍”。
vivo首席天線專家黃奐衢 博士 領跑首談《手機毫米波天線陣列設計概覽》
毫米波天線陣列身負5G熱點高容量無線通信之重任
在5G的大潮中,除了芯片廠商、運營商,與設備廠商外,終端廠商也扮演著重要的角色。因其整體與用戶更加貼近,故可以為使用場景的技術預研,及終端性能的挖掘與優化進行積累準備,而5G手機的天線設計便是手機無線通信性能研究與優化極為重要的方向之一。而可見的未來,手機基本而言依然是人們日常生活中最重要的無線通信工具之一,而無線通信的品質好壞很大程度即取決于天線性能。
何謂天線?它有什么作用?黃奐衢博士解說,以工程上的基本定義而言,天線是一個過渡元器件,其擔負著終端與自由空間端間電磁能量平滑有效率進行收發傳遞的功用,且天線在無線通信鏈上,其是發射端的最后一級,但卻又是接收端的第一級,即其同時身兼前鋒與后衛的角色,也如山海關一般,是中原出塞的最后一關,但卻又是塞入中原的第一關,故若山海關不振,則中原震蕩,京師危矣,故天線在無線通信鏈路上的關鍵地位不言而喻。
黃博士也表示,對于無線通訊設備來說,天線對此些設備起的作用,相當于眼睛和耳朵之于人類。性能低下的天線常常造成高掉話率與更短的通訊距離,好比因近視和弱聽造成人類較短的視力距離和較差的聽力品質。
回顧這些年天線設計的發展歷程時,黃博士表示,在1G到3G世代的手機天線設計,基本可由天線設計師獨力完成,但到了4G LTE時代,由于頻帶的增多與頻率下探,在受限的天線有效空間下,往往需借助電調諧器件,以達更有效率的輻射,而此時軟件便對手機天線設計有所涉入與貢獻,但此時軟件工作仍屬于支持天線設計師的輔助角色,到了5G毫米波的天線陣列設計,軟件的角色已經不再只是按照天線設計師的要求進行協助,而是轉變為可以直接影響波束賦形陣列性能良莠的關鍵角色。
故黃博士認為,1G到3G,天線設計師對手機天線設計是主宰的角色,而到4G是主導的角色,到了5G毫米波,則轉變為與軟件工程師協作的角色,而這也是由另一視角與觀點再次說明5G手機毫米波天線陣列設計本質上的轉變。
而因毫米波通信的高頻傳輸,故能因其大的帶寬帶來更高的通信系統容量,而使無線傳輸速率進一步增長,而支撐5G主要場景之一“熱點高容量”的無線通信指標要求,以提升用戶5G的無線體驗。而如前述,毫米波天線陣列便是這一高速無線體驗的關鍵支柱。
而目前雖然5G手機整機主要且直接的毫米波天線性能指標尚未明確及訂出,但黃博士表示一般可分為兩個維度,一個是EIRP(Effective Isotropic Radiated Power,有效無向輻射功率)的最大值與最小值,因為若EIRP太大,會造成對其他系統的EMI(Electromagnetic Interference,電磁干擾);而若EIRP太小,則無法保證有效的無線通信品質,故毫米波天線陣列的EIRP需規范在一合理的最大與最小值區間之內。
另一維度是最低的波束空間覆度,因越廣的空間覆蓋越有助于用戶的無線體驗,但越廣的空間覆蓋,則往往需要犧牲手機外形設計的極致性與吸引力,故在毫米波束廣覆蓋度與手機整體競爭力兩者間需做適當的權衡,而這其實也是目前3GPP RAN4 (Radio Access Network)5G毫米波討論的重點熱區。
此外,黃奐衢博士講述到,雖毫米波波束賦性天線陣列有不同的設計架構與方向,但現今手機毫米波天線陣列較為主流與合適的可能方向一般是基于相控陣(phased antenna array)的方式,而相控陣毫米波天線陣列實現的方式主要可分為三種,即:AoB (Antenna on Board,即天線陣列位于系統主板上)、AiP (Antenna in Package,即天線陣列位于芯片的封裝內),與AiM (Antenna in Module,即天線陣列與RFIC形成一模組)。
雖此三者各有優勢之處,但目前更多的是以AiM的方式實現,而AiM毫米波波束賦性天線陣列的設計重點主要有:天線陣列(包含feeding network,即饋入網路)的設計與優化能力、板材(substrate)與涂料(coating)的選擇與驗證能力、電氣系統與結構環境的設計與優化能力、模組化制程的設計與實現能力,與軟件算法的設計與優化能力等。而黃博士也分享手機毫米波的射頻前端主要電路框圖,黃博士表示,射頻前端器件(如:功率放大器,PA與低噪聲放大器,LNA,即相移器,PS)皆會整合入射頻芯片(RFIC)內,且每一路(因有多路以連接多個天線單元)的射頻通路皆有各自的PA,LNA,與PS,而毫米波天線陣列與射頻芯片間將取消傳統的射頻座,即不會有傳統的板端射頻調試與傳導測試,相關射頻參數驗證將以空口(OTA, Over-the-Air)方式進行。
在分享毫米波射頻前端電路的架構后,黃博士也對手機毫米波天線陣列設計進行深入而詳盡的剖析,黃博士表示,AiM的毫米波天線陣列為了更好的波束賦性以達到前述的更廣的空間覆蓋,一般會以輻射波束互補(如broadside radiation,即寬邊輻射,與end-fire radiation,即端射)的天線種類(如patch antenna,即貼片天線,與quasi-Yagi antenna,即準八木天線)進行搭配設計,并基于天線饋點的適當設計,以達到雙極化(垂直與水平極化)的覆蓋,以增加無線通信連接能力,且將RFIC倒置焊接,以讓天線饋入走線盡量縮短,以減少高頻傳輸帶來的高路損,而使得毫米波天線陣列有更高的輻射增益,達到較好的EIRP與覆蓋強度。