硅與碳的唯一合成物就是碳化硅(SiC),俗稱金剛砂。SiC 在自然界中以礦物碳硅石的形式存在,但十分稀少。不過,自1893 年以來,粉狀碳化硅已被大量生產用作研磨劑。碳化硅用作研磨劑已有一百多年的歷史,主要用于磨輪和眾多其他研磨應用。
利用當代技術,人們已使用SiC 開發出高質量的工業級陶瓷。這些陶瓷展現出頗具優勢的機械特性,如:
• 高硬度• 高強度
• 低密度
• 高彈性模量
• 高抗熱震性
• 優越的化學惰性
• 高導熱率
• 低熱膨脹
這些高強度、較持久耐用的陶瓷廣泛用于各類應用,如汽車制動器和離合器,以及嵌入防彈背心的陶瓷板。碳化硅也用于在高溫和/或高壓環境中工作的半導體電子設備,如火焰點火器、電阻加熱元件以及惡劣環境下的電子元器件。
SiC 在汽車中的應用
碳化硅在汽車中的一個主要用途就是高性能“陶瓷”制動盤。硅與復合材料中的石墨結合形成了碳纖維增強碳化硅(C/SiC)。這種制動盤用于一些運動型轎車、超級跑車以及其它頂級車型。
SiC 在汽車中的另一個應用是用作油品添加劑。作此用途時,SiC 可減少摩擦、輻射以及諧波。
SiC 的早期應用
LED
電致發光現象最早于1907 年使用碳化硅發光二極管(LED) 發現。很快,第一批商用SiC 基LED 就生產出來了。20 世紀70 年代,前蘇聯生產出了黃色SiC LED,20 世紀80 年代藍色LED 在世界范圍內廣泛生產。后來推出了氮化鎵(GaN) LED,這種LED 發出的光比SiC LED 明亮數十倍乃至上百倍,SiC LED 也因此幾乎停產。然而,SiC 仍然是常用于GaN 設備的基底,同時還用作高功率LED 散熱器。
避雷器
達到閾值電壓(VT) 前,SiC 都具有較高的電阻。達到閾值電壓后,其電阻將大幅下降,直至施加的電壓降到VT 以下。最早利用該特性的SiC 電氣應用是配電系統中的避雷器(圖1)。
圖1:SiC 避雷器應用(圖片由ArresterWorks 提供)。
由于SiC 擁有壓敏電阻,因此SiC 芯塊柱可連接在高壓電線和地面之間。如電源線遭雷擊,線路電壓將上升并超過SiC 避雷器的閾值電壓(VT),從而將雷擊電流導向并傳至地面(而非電力線),因此不會造成任何傷害。但是,這些SiC 避雷器在電力線正常工作電壓下過于導電。因而必須串聯一個火花隙。當雷擊使電源線導線的電壓上升時,火花隙將離子化并導電,將SiC 避雷器有效地連接在電力線和地面之間。后來,相關人員發現避雷器中使用的火花隙并不可靠。由于材料失效、灰塵或鹽侵等原因,可能出現火花隙在需要時無法觸發電弧,或者電弧在閃電結束后無法猝熄的情況。SiC 避雷器本來是用來消除對火花隙的依賴的,但由于其不可靠,有間隙的SiC 避雷器大多被使用氧化鋅芯塊的無間隙變阻器所取代。
電力電子中的SiC
使用SiC 生產的半導體設備有多種,包括肖特基二極管(也稱肖特基勢壘二極管,或SBD)、J 型FET(或JFET),以及用于大功率開關應用的MOSFET。SemiSouth Laboratories(已于2013 年倒閉)在2008 年推出了第一款商用1200 V JFET,Cree 在2011 年生產了第一款商用1200 V MOSFET。在此期間,一些公司也開始嘗試將SiC 肖特基二極管裸芯片應用到電力電子模塊中。事實上,SiC SBD 已廣泛用于IGBT 電源模塊和功率因數校正(PFC) 電路。
圖2:SiC 元件代表:肖特基二極管、JFET 和MOSFET。
SiC 的利與弊
SiC 基電力電子元件如此吸引人的一個原因就是,在既定阻斷電壓條件下,其摻雜密度比硅基設備幾乎高出百倍。這樣就可以通過低導通電阻獲得高阻斷電壓。低導通電阻對高功率應用至關重要,因為導通電阻降低時發熱少,從而減少了系統熱負荷并提高了整體效率。
但生產SiC 基電子元器件本身也存在一些難點,消除缺陷成了最重要的問題。這些缺陷會導致SiC 晶體制成的元器件反向阻斷性能較差。除了晶體質量問題,二氧化硅和SiC 的接口問題也阻礙了SiC 基功率MOSFET 和絕緣柵雙極型晶體的發展。幸運的是,生產中使用滲氮工藝可使造成這些接口問題的缺陷大大降低。
SiC 研磨片
碳化硅仍然在許多工業應用中用作研磨劑。其在電子行業中主要用作拋光膜,用于在拼接前為光導纖維的兩端拋光。這些膜片能夠給光纖接頭帶來有效運作所需的高光潔度。
結論
碳化硅的生產已有一百多年的歷史, 但直到最近才用于電力電子行業。由于其具備特殊的物理和電氣特性,在高壓和高溫應用中十分有用。