碳原子呈六角形網狀鍵合的材料“石墨烯”具有很多出色的電特性、熱特性以及機械特性。具體來說,具有在室溫下也高達20萬cm2/Vs以上的載流子遷移率,以及遠遠超過銅的對大電流密度的耐性。為此,石墨烯有望用于高速晶體管、觸摸面板、太陽能電池用透明導電膜,以及成本低于銅但與銅相比可通過大電流的電線等。
另外,在目前可以制作的片狀材料中,石墨烯的厚度最薄、比表面積也較大。而且,還具有超過金剛石的強度、彈性模數和導熱率。如果沒有缺陷的話,即便是單層石墨烯,也不會通過大于氦(He)原子的物質。這些性質可以使石墨烯作為電池的電極材料、散熱膜、MEMS傳感器,或是理想的阻擋膜(Barrier Film)。
與其他材料相比,石墨烯還擁有許多極為特殊的性質。例如,在室溫下也可呈現量子霍爾效應;可實現名為“Klein Tunneling”的、透射率為100%的通道效應;電阻值為固定值而與距離無關的“彈道輸運”(Ballistic Transport)的有效距離較長;按照由石墨烯上的自由電子來描述中微子的方程式(韋爾方程,Weyl Equation),石墨烯可以像質量為零的粒子一樣運動;而且,石墨烯具有被稱為“贗自旋(Pseudospin)”和“贗磁場”的、宛如存在電子自旋和磁場的特性;石墨烯還擁有負折射率,等等。這些特性可以使石墨烯用于超高精度的氣體傳感器和應變傳感器等。
1、可做“太空電梯”纜線
石墨烯不僅可用來開發制造出紙片般薄的超輕型飛機材料、超堅韌的防彈衣,甚至能讓科學家夢寐以求的2.3萬英里長太空電梯成為現實。研究人員表示,如果這種方法被證明可用以成批制造石墨烯光纖,將能降低超堅固炭素復合材料的成本,炭素復合材料在航空航天、汽車和建筑等領域具有廣泛的用途。
2、代替硅生產電子產品
硅讓我們邁入了數字化時代,但研究人員仍然渴望找到一些新材料,讓集成電路更小、更快、更便宜。在眾多的備選材料中,石墨烯最引人矚目。石墨烯值得炫耀的優點有很多,比如超高強度、高透光性以及超強導電性,這讓它成為了制造可彎曲顯示設備和超高速電子器件的理想材料。石墨烯如今已經出現在新型晶體管、存儲器和其他器件的原型樣品當中。
國際商業機器公司(IBM)己研制出運行速度最快的石墨烯晶體管。lBM公司于2010年12月發布了其與美國麻省理工學院MIT的共同研究成果——在SiC基板上形成的柵長為240nm的石墨烯場效應晶體管FET,并驗證其截止頻率為230GHz。石墨烯通過熱外理SiC基板而成膜。IBM表示,計劃將其應用于高頻RF元件。
Rice大學研究人員正在著手研究一類存儲單元密度至少為閃存兩倍的石墨烯片狀存儲器。石墨烯是由沒有卷成納米管的純炭原子薄膜構成,此次Rice大學研究人員首次將石墨烯用于架構更簡單的雙端存儲器件。
科學家發現,石墨烯還是目前已知導電性能最出色的材料。石墨烯的這種特性尤其適合于高頻電路。高頻電路是現代電子工業的領頭羊,一些電子設各,例如手機,由于工程師們正在設法將越來越多的信息填充在信號中,它們被要求使用越來越高的頻率,然而手機的工作頻率越高,熱量也越高。于是,高頻的提升便受到很大的限制。由于石墨烯的出現,高頻提升的發展前景似乎變得無限廣闊了。這使它在微電子領域也具有巨大的應用潛力。研究人員甚至將石墨烯看作是硅的替代品,能用來生產未來的超級計算機。
3、光子傳感器
石墨烯還可以以光子傳感器的面貌出現在更大的市場上,用于檢測光纖中攜帶的信息。現在,這個角色還在由硅擔當,但硅的時代似乎就要結束。去年10月,IBM的一研究小組首次披露了他們研制的石墨烯光電探測器,接下來人們要期待的就是基于石墨烯的太陽能電池和液晶顯示屏了。
英國劍橋大學及法國CNR的研究人員已經制造出超快鎖模石墨烯激光器。由于石墨烯為零能隙的半導體,這項研究成果不僅令人意外,而且顯示了石墨烯在光電器件上大有可為。
4、納電子器件
石墨烯是納米電路的理想材料,也是驗證量子效應的理想材料。但是由于完整的石墨烯基本沒有帶隙,極大地限制了它在半導體器件上的應用,所以為石墨烯開啟一個帶隙,是一件非常重要的課題。近來研究表明,一維尺度受限的石墨烯納米帶具有一定的帶隙,可以獲得高性能的晶體場效應管,增加芯片速度與效能、降低耗熱量。然而,制備寬度小于10nm的石墨烯納米帶是非常困難的問題。
在納電子器件方面石墨烯的可能應用包括:電子工程領域極具吸引力的室溫彈道場效應管;進一步減小器件開關時間,THz超高頻率的操作響應特性;探索單電子器件在同一片石墨烯上集成整個電路。
據美國物理學家組織網2010年6月10日報道,美國科研人員利用石墨烯制造納米電路領域取得突破性進展。設計出了簡便、快速的納米電線制造方法,能夠調諧石墨烯的電學特征,使氧化石墨烯從絕緣物質變成導電物質。
美國曼徹斯特大學的研究人員用石墨烯制成了分子級電子電路。石墨烯可以被刻成擁有單個晶體管的電子電路,其尺寸不比分子大多少,晶體管尺寸越小,其功能越強。研究人員還表示,從氧化石墨烯到石墨烯的簡單轉換是制造導電性納米線的重要途徑,其不僅可應用于軟性電子學領域,還有望用于生產與生物兼容的石墨烯電線,可被用于測量單個生物細胞的電子信號。
5、優良的太陽能電池
因為石墨烯是透明的,用它制造的電板比其他材料具有更優良的透光性。透明的石墨烯薄可制成優良的太陽能電池。美國魯特格大學開發出一種制造透明石墨烯薄膜的技術,這是一種幾厘米寬、1~5nm厚的薄膜。石墨烯薄膜是一種平坦的單原子碳薄,可用于取代透明導電的ITO電極用于有機太陽能電池。這些薄膜還用于取代顯示屏中的硅薄膜晶體管。石墨烯運送電子的速度比硅快幾十倍,因而用石墨烯制成的晶體管工作得更快、更省電。美國南加州大學的研究人員開發了一種柔性碳原子薄膜透明材料,并用它制作出有機太陽電池。
6、單分子傳感器
美國倫斯勒理工學院的研究者最近發表的三項新研究成果表明石墨烯應該用于制造風力渦輪機和飛機機翼的增強復合材料。石墨烯可用作吸附劑、催化劑載體、熱傳輸媒體,可制成具有精細結構的電子元件,應用于電池/電容器,即使在生物技術方面也可得到應用。
2010年,美國萊斯大學利用該石墨烯量子點,制作單分子傳感器。萊斯大學將石墨烯薄片與單層氦合形成石墨烷。氦使導電的石墨烯變換成為絕緣的石墨烷。研究人員移除石墨烯薄片兩面的氦原子島,就形成了被石墨烷絕緣體包圍的、微小的導電的石墨烯阱。該導電的石墨烯阱就可作為量子阱。量子點的半導體特性要優于體硅材料器件。這一技術可用來制作化學傳感器、太陽能電池、醫療成像裝置或是納米級電路等。
7、觸摸面板試制品不斷面世
透明導電膜這一用途備受期待的原因在于,石墨烯具備較高的載流子遷移率且厚度較薄。一般來說,高透明性與高導電性是互為相反的性質。從這一點來看,ITO正好處在透明性與導電性微妙的此消彼長(Trade-off)關系的邊緣線上(如下圖)。這也是超越ITO的替代材料遲遲沒有出現的原因。
石墨烯在理論上有望避開這種此消彼長的關系成為理想的透明導電膜。其原因是,由于載流子遷移率非常高,即使載流子密度較低,導電性也不容易下降。而載流子密度較低的話,會比較容易穿過更大波長范圍的光。相當于單個原子的超薄厚度同樣有助于提高透明性。不僅是可見光,石墨烯還可透過大部分紅外線,這一性質目前已為人所知。因此,對于還希望利用紅外線來發電的太陽能電池而言,石墨烯有望成為劃時代的透明導電膜。與不適于彎曲的ITO相比,還具備柔性較高的優勢。
不過,透明導電膜目前還存在很多問題。由于制作大面積石墨烯時會混入很多雜質及缺陷,因此大多數試制品的導電性及透明性都未達到ITO的水平。即便如此,石墨烯仍有望用來制作觸摸面板如下圖所示。
a. 為產綜研以石墨烯為透明導電膜制作的觸摸面板。b. 為使用CNT的例子。c. 表示試制例的性能及用途。d. 由產綜研提供。
這個觸摸屏的工作原理很容易理解,觸摸屏由上下兩層粘在PET薄膜上的石墨烯構成,沒有接觸的情況下,兩層石墨烯被下層上放置的絕緣點陣阻隔而互不接觸。當外界壓力存在的時候,PET薄膜和石墨烯在壓力下發生形變,這樣上下兩層石墨烯就發生接觸,電路連通。接觸的位置不同,器件邊緣電極收集到的電信號也不一樣,通過對電信號的分析,就可以確定是觸摸屏上的哪個位置發生了接觸。三星公司的成功,讓人們看到,這種生成大尺寸石墨烯的方法完全適合于工業應用,而且相對于傳統方法,成本低了很多。
8、石墨烯納米生物傳感器
2010年3月,在中國科學院院長特別基金和國家自然基金項目的支持下,國家納米科學中心石墨烯納米生物傳感器研究取得突破。國家納米科學中心和美國哈佛大學合作首次成功制備了石墨烯與動物心肌細胞的人造突觸,建立了一維、二維納米材料與細胞相結合的獨特研究體系,為生物電子學的研究帶來了新的機遇。
9、高速光學調制器
美國華裔科學家使用納米材料石墨烯最新研制出了一款調制器,科學家表示,這個只有頭發絲四百分之一細的光學調制器具備的高速信號傳輸能力,有望將互聯網速度提高一萬倍,一秒鐘內下載一部高清電影指日可待。這項研究的突破點就在于,用石墨烯這種世界上最薄卻最堅硬的納米材料,做成一個高速、對熱不敏感,寬帶、廉價和小尺寸的調制器,從而解決了業界長期未能解決的問題。
10、石墨烯納米抗菌材料
2010年8月20日,美國化學會《ACS納米》雜志報道了中國科學院上海應用物理研究所物理生物學實驗室在新型石墨烯納米抗菌材料方面的研究工作。上海應用物理所物理生物學實驗室的博士研究生胡文兵等在樊春海和黃慶研究員的指導下探索了氧化石墨烯的抗菌特性,發現氧化石墨烯納米懸液在與大腸桿菌孵育2h后,對其抑制率超過90%,進一步的實驗結果表明氧化石墨烯的抗菌性源于其對大腸桿菌細胞膜的破壞。更重要的是:氧化石墨烯不僅是一種新型的優良抗菌材料,而且對哺乳動物細胞產生的細胞毒性很小。此外,通過抽濾法能夠將氧化石墨烯制備成紙片樣的宏觀石墨烯膜,也能有效地抑制大腸桿菌的生長。由于氧化石墨烯的制備簡便、成本低廉,這種新型的碳納米材料有望在環境和臨床領域得到廣泛的應用。中國科研人員發現細菌的細胞在石墨烯上無法生長,而人類細胞卻不會受損。利用這一點石墨烯可以用來做繃帶,食品包裝甚至抗菌T恤。
11、其它
中國科學院金屬所沈陽材料科學國家聯合實驗室先進炭材料部的研究人員在石墨烯的研究方面取得的進展主要包括以下三個方面:可控制備出高質量石墨烯;提出了表征石墨烯結構的新方法;開展了石墨烯的應用探索。在石墨烯的應用方面,該實驗室有研究人員在石墨烯宏量制備的基礎上,開展了石墨烯在場發射體、超級電容器、鋰離子電池和透明導電膜等方面的應用探索。
如上所述,石墨烯有望在諸多應用領域中成為新一代器件,但這些元件要達到實際應用水平,還需要解決一大問題。那就是如何在所要求的基板或位置制作出不含缺陷及雜質的高品質石墨烯,或者通過摻雜Doping法實現所期望載流子密度的石墨烯。用于透明導電膜用途時能否實現大面積化及量產化,而用于晶體管用途時能否提高層控制精度,這些問題都十分重要。今后,為了探尋石墨烯更廣闊的應用領域,還需繼續尋求更為優異的石墨烯制備工藝,使其得到更好的應用。
作者:物理 1001 任建新