毛片视频免费观看-毛片视频在线免费观看-毛片手机在线视频免费观看-毛片特级-中文亚洲字幕-中文一级片

利用MAX5879 DAC實現RF直接變頻發送器 提升系統穩定性

2013-05-27 來源:微波射頻網 字號:

引言

無線電發射器在經歷了若干年的發展后,逐步從簡單中頻發射架構過渡到正交中頻發送器、零中頻發送器。而這些架構仍然存在局限性,最新推出的RF直接變頻發送器能夠克服傳統發送器的局限性。本文比較了無線通信中不同發射架構的特點,RF直接變頻發送器采用高性能數/模轉換器(DAC),比傳統技術具有明顯優勢。RF直接變頻發送器也具有自身挑戰,但為實現真正的軟件無線電發射架構鋪平了道路。

RF DAC,例如14位2.3Gsps MAX5879,是RF直接變頻架構的關鍵電路。這種DAC能夠在1GHz帶寬內提供優異的雜散和噪聲性能。器件在第二和第三奈奎斯特頻帶采用創新設計,支持信號發射,能夠以高達3GHz的輸出頻率合成射頻信號,測量結果驗證了DAC的性能。

傳統的射頻發送器架構

過去數十年間,一直采用傳統的發送器架構實現超外差設計,利用本振(LO)和混頻器產生中頻(IF)。混頻器通常在LO附近產生兩個鏡頻(稱為邊帶),通過濾除其中一個邊帶獲得有用信號。現代無線發射系統,尤其是基站(BTS)發送器大多對基帶數字調制信號進行I、Q正交調制。

無線發送器架構

圖1. 無線發送器架構。

正交中頻發送器

復數基帶數字信號在基帶有兩個通路:I和Q。采用兩個信號通路的好處是:使用模擬正交調制器(MOD)合成兩個復數IF信號時,其中一個IF邊帶被消除。而由于I、Q通路的不對稱性,不會非常理想地抵消調制器的鏡頻。這種正交IF架構如圖1(B)所示,圖中,利用數字正交調制器和LO數控振蕩器(NCO)對I、Q基帶信號進行內插(系數R),并調制到正交IF載波。然后,雙DAC將數字I、Q IF載波轉換成模擬信號,送入調制器。為了進一步增大對無用邊帶的抑制,系統還采用了帶通濾波器(BPF)。

零中頻發送器

圖1(A)所示的零中頻(ZIF)發送器中,對基帶數字正交信號進行內插,以滿足濾波要求;然后將其送入DAC。同樣在基帶將DAC的正交模擬輸出送至模擬正交調制器。由于將整個已調制信號轉換到LO頻率的RF載波,所以,ZIF架構真正凸顯了正交混頻的“魅力”。然而,考慮到I、Q通路并非理想通路,例如LO泄漏和不對稱性,將會產生反轉的信號鏡像(位于發射信號范圍之內),從而造成信號誤碼。多載波發送器中,鏡頻信號可能靠近載波,造成帶內雜散輻射。無線發送器往往采用復雜的數字預失真,用來補償此類瑕疵。

RF直接變頻發送器

圖1(D)所示RF直接變頻發送器中,在數字域采用正交解調器,LO由NCO取代,從而在I、Q通路獲得幾乎完美的對稱性,基本沒有LO泄漏。所以數字調制器的輸出為數字RF載波,送入超高速DAC。由于DAC輸出為離散時間信號,產生與DAC時鐘頻率(CLK)等距的混疊鏡頻。由BPF對DAC輸出進行濾波,選擇射頻載波,然后將其送至可變增益放大器(VGA)。

高中頻發送器

RF直接變頻發送器也可利用這種方法產生較高中頻的數字載波,如圖1(C)所示。這里,DAC將數字中頻轉換為模擬中頻載波。DAC之后利用帶通濾波器的選頻特性濾除中頻鏡頻。然后將該需要的中頻信號送入混頻器,產生IF信號與LO混頻的兩個邊帶,經過另外一個帶通濾波器濾波,獲得需要的RF邊帶。

顯然,RF直接變頻架構需要最少的有源元件。由于采用帶數字正交調制器和NCO的FPGA或ASIC取代模擬正交調制器和LO,RF直接變頻架構避免了I、Q通道的不平衡誤差及LO泄漏。此外,由于DAC的采樣率非常高,更容易合成寬帶信號,同時可保證滿足濾波要求。

高性能DAC是RF直接變頻架構取代傳統無線發送器的關鍵元件,該DAC需要產生高達2GHz甚至更高的射頻載波,動態性能要達到其它架構提供的基帶或中頻性能。MAX5879就是一款這樣的高性能DAC。

利用MAX5879 DAC實現RF直接變頻發送器

MAX5879是一款14位、2.3Gsps RF DAC,輸出帶寬大于2GHz,具有超低噪聲和低雜散性能,設計用于RF直接變頻發送器。其頻率響應(圖2)可通過更改其沖激響應進行設置,不歸零(NRZ)模式用于第一奈奎斯特頻帶輸出。RF模式集中第二、第三奈奎斯特頻帶的輸出功率。歸零(RZ)模式在多個奈奎斯特頻帶提供平坦響應,但輸出功率較低。

MAX5879的獨特之處在于RFZ模式。RFZ模式為“零填充”射頻模式,所以,DAC輸入采樣率為其它模式的一半。該模式對于采用較低帶寬合成信號非常有用,并可輸出高階奈奎斯特頻帶的高頻信號。所以MAX5879 DAC可用于合成超出其采樣率的調制載波,僅受限于2+GHz模擬輸出帶寬。

MAX5879 DAC的可選頻響特性

圖2. MAX5879 DAC的可選頻響特性。

MAX5879性能測試表明:940MHz下,4載波GSM信號的交調失真大于74dB (圖3);2.1GHz下,4載波WCDMA信號的鄰道泄漏功率比(ACLR)為67dB (圖4);2.6GHz下,2載波LTE的ACLR為65dB (圖5)。這種性能的DAC能夠支持多奈奎斯特頻帶中各種數字調制信號的直接數字合成,可作為多標準、多頻帶無線基站發送器的公共硬件平臺。

 

 MAX5879 4載波GSM性能測試,940MHz和2.3Gsps (第一奈奎斯特頻帶)

圖3. MAX5879 4載波GSM性能測試,940MHz和2.3Gsps (第一奈奎斯特頻帶)。

MAX5879 4載波WCDMA性能測試,2140MHz和2.3Gsps (第二奈奎斯特頻帶)

圖4. MAX5879 4載波WCDMA性能測試,2140MHz和2.3Gsps (第二奈奎斯特頻帶)。

MAX5879 2載波LTE性能測試,2650MHz和2.3Gsps (第三奈奎斯特頻帶)

圖5. MAX5879 2載波LTE性能測試,2650MHz和2.3Gsps (第三奈奎斯特頻帶)。

RF直接變頻發送器應用

MAX5879 DAC也可以同時發送奈奎斯特頻帶的多個載波。該功能目前用于有線電視下行發射鏈路,發送50MHz至1000MHz頻帶的多個QAM調制信號。對于該應用,RF直接變頻發射器可以支持的載波密度是其它發射架構的20-30倍。此外,由于單個寬帶RF直接變頻發送器取代了多個無線發送器,從而大大減小了有線電視前端的功耗和面積。

基于MAX5879的RF直接變頻發送器可利向用于寬帶、高頻輸出的應用,例如,隨著智能手機和平板電腦的日益普及,無線基站將需要更寬頻帶。毫無疑問,當前支持此類裝置的發射器將逐步由基于高性能RF DAC (例如MAX5879)的RF直接變頻發送器所取代。

總結

基于RF DAC的發送器具有遠遠超出傳統架構的發射帶寬,而且不會損失動態性能,可利用FPGA或ASIC實現,省去了模擬正交調制器和LO合成器,從而提高無線發送器的可靠性。這種方案也大大減少了元件數量,多數情況下也會降低系統功耗。

主站蜘蛛池模板: 欧美日韩免费一区二区三区 | 91精品国产吴梦梦在线观看永久 | 66久久| 日日夜夜免费精品视频 | 在线视频精品免费 | 四虎影院一区二区 | 久精品在线观看 | 精品日韩一区 | 亚洲综合色网站 | 国产色在线 | 91精品国产麻豆国产自产在线 | 亚洲欧美精品 | 四虎最新网址 | 天堂网2016 | 国产精品一区在线免费观看 | 日韩中文字幕视频在线观看 | 99香蕉国产线观看免费 | 在线观看麻豆精品国产不卡 | www.日本在线观看 | 亚洲成人福利 | 国产一区二区免费不卡在线播放 | 国产视频一区二 | 四大菩萨谁最厉害排第一位 | 久草视频中文 | 精品99一区二区三区麻豆 | 男人天堂a | 欧美日韩在线视频一区 | 91久久精品国产一区二区 | 四虎伦理| 久久久久综合给合狠狠狠 | 亚洲日日做天天做日日谢 | 日韩 ed2k| 极品女神视频在线观看 | aaaaaa精品视频在线观看 | 日韩精品观看 | 好男人影视官网在线www | 日本特黄一级 | 99r在线| 天堂网在线www | 国产手机在线观看 | 亚洲欧美一级视频 |